

Abstracts

Dissipation Loss Effects in Isolated and Coupled Transmission Lines

B.E. Spielman. "Dissipation Loss Effects in Isolated and Coupled Transmission Lines." 1977 Transactions on Microwave Theory and Techniques 25.8 (Aug. 1977 [T-MTT]): 648-656.

This paper describes a computer-aided analysis of dissipation losses in uniform isolated or coupled transmission lines for microwave and millimeter-wave integrated-circuit applications. The analysis employs a quasi-TEM model for isolated transmission lines and for the even- and odd-mode transmission lines associated with coupled-line structures. The conductor and dielectric losses are then related to equivalent charge density distributions, which are evaluated using a method-of-moments solution. The transmission lines treated by this analysis may contain any number of lossy conductors and inhomogeneous dielectrics, consisting of any number of different homogeneous dielectric regions. A development is provided to explicitly relate the four-port terminal-electrical performance of directional couplers to evaluated even- and odd- mode loss coefficients. Examples of evaluated losses are presented in graphical form for isolated lines of inverted microstrip and trapped inverted microstrip and edge-coupled microstrip with a dielectric overlay. The analysis accuracy has been confirmed using microstrip and coplanar waveguide configurations. A comparison is made of the total loss characteristics for microstrip, coplanar waveguide, inverted microstrip, and trapped inverted microstrip. Calculations are compared with measurements for the coupled-line structure. Accuracy of the solution and suggested refinements are discussed. Five computer programs are documented.

[Return to main document.](#)

Click on title for a complete paper.